SIAM J. Sc1. COMPUT.

(© 1999 Society for Industrial and Applied Mathematics
Vol. 20, No. 4, pp. 1430-1437

THE EFFICIENT COMPUTATION OF STRUCTURED GRADIENTS
USING AUTOMATIC DIFFERENTIATION*

THOMAS F. COLEMAN! AND GUDBJORN F. JONSSON?

Abstract. The advent of robust automatic differentiation tools is an exciting and important
development in scientific computing. It is particularly noteworthy that the gradient of a scalar-
valued function of many variables can be computed with essentially the same time complexity as
required to evaluate the function itself. This is true, in theory, when the “reverse mode” of automatic
differentiation is used (whereas the “forward mode” introduces an additional factor corresponding to
the problem dimension). However, in practice, performance on large problems can be significantly
(and unacceptably) worse than predicted. In this paper we illustrate that when natural structure is
exploited, fast gradient computation can be recovered, even for large dimensional problems.

Key words. automatic differentiation, computational differentiation, gradients, optimization,
inverse problems

AMS subject classifications. 65K05, 65Y99, 90C06, 90C30

PII1. S1064827597320794

1. Introduction. When solving a nonlinear optimization problem, the gradient
Vf of a function f : R" — R is usually required. Given a code (in Fortran, C, or
C++) that computes this function, automatic differentiation (AD) tools can be used
to compute the gradient at a given point. This approach has advantages over both
hand-coding and finite differences. Except when the function is fairly simple, hand-
coding of the derivative function is a tedious and sometimes error-prone job. Even if
symbolic software is used, the resulting expression can be complex and hard to work
with. Automatic differentiation gives an accurate result; i.e., there are no truncation
errors and no human errors.

Given a code for a function F : R® — R™, AD uses the chain rule successively to
compute the derivative matrix. AD has two basic modes, forward mode and reverse
mode. The difference between these two is the way the chain rule is used to propagate
the derivatives.

Given an n x ty seed matrix V, forward mode computes the product JV, where
J is the Jacobian of the function F'. This takes time proportional to ty - w(F), where
w(F) is the time to evaluate F. Reverse mode computes W7TJ, where W is an m x ty
matrix, in time proportional to ¢ty -w(F). In the case of the gradient, W can be chosen
as a 1 x 1 matrix for use with reverse mode, whereas forward mode requires V to be
n x n. Hence, reverse mode seems to be preferable to forward mode for gradient
computations.

However, when using AD, memory usage is just as important as the number of

*Received by the editors April 28, 1997; accepted for publication (in revised form) March 19,
1998; published electronically March 23, 1999. This research was partially supported by the Applied
Mathematical Sciences Research Program (KC-04-02) of the Office of Energy Research of the U.S.
Department of Energy under grant DE-FG02-90ER25013.A000 and by the Advanced Computing
Research Institute, a unit of the Cornell Theory Center, which receives major funding from the
National Science Foundation and IBM Corporation, with additional support from New York State
and members of its Corporate Research Institute.

http://www.siam.org/journals/sisc/20-4/32079.html

tComputer Science Department and Center for Applied Mathematics, Cornell University, Ithaca,
NY 14850 (coleman@cs.cornell.edu).

1Center for Applied Mathematics, Cornell University, 1thaca, NY 14850 (jonsson@cam.cornell.
edu).

1430

STRUCTURED GRADIENTS 1431

Solve fory : ﬁE(z,y) =0 _
“Solve” for output z : z — f(z,y1,y2,...,¥p) = 0.

FiG. 1. Structured f-evaluation in compact form.

flops. The memory used by forward mode is proportional to ty u(F), where u(F) is the
memory used to evaluate F. On the other hand, in reverse mode all the intermediate
results have to be stored, so reverse mode often requires a huge amount of memory.
Even for moderately sized problems, the memory requirements of reverse mode can
surpass the internal memory available and cause greatly reduced performance.

Note that this applies only to the straightforward use of reverse mode, i.e., when
a single forward sweep is made, storing all the intermediates, followed by a reverse
sweep to compute W7 J. Fortunately, the memory requirement can be significantly
reduced by using techniques like the checkpointing scheme introduced by Griewank [§]
and by taking advantage of the underlying structure of the function.

In this paper we will examine how structure can be exploited in the computation
of gradients by AD. In particular, our approach is to break the problem into manage-
able pieces, defined by the natural structure of the problem, and whenever possible
take advantage of sparsity. Numerical experiments are made to compare the various
approaches, including a straightforward application of reverse mode.

Bischof et al. [2] explore the use of AD to compute the gradient of a partially
separable function, i.e., a function f : R®™ — R that can be written in the form

(1) fl@) =Y filz),
i=1

where each f; depends on p; < n variables. The ADIFOR tool [1] is used for the nu-
merical experiments in [2], and AD is compared to hand-coding and finite differences.

However, not all functions are partially separable and we will examine two such
cases. Furthermore, ADIFOR has only forward mode and we explore the use of reverse
mode as well.

When computing a sparse Jacobian matrix using AD, graph-coloring algorithms
can be used to significantly reduce the amount of work. The algorithm described in [2]
illustrates the use of one-sided coloring. Two-sided coloring [3] combines the powers
of both forward and reverse mode by constructing thin matrices V and W so that the
Jacobian J can be determined from the pair (JV, W7.J).

Coleman and Verma [4, 6] show how sparsity and structure can be exploited to
compute Jacobian and Hessian matrices efficiently using AD. In the scalar-valued case
they define a structured computation, evaluate z = f(z), f : R® — R, as follows:

Solve for y1: Fi(z,y1) = 0,
Solve for yo: Fo(x,y1,y2) =0,

Solve for y,: Fp(z,y1,---,9p) = 0,

Solve for z: z — f(x,y1,...,yp) =0,
where f is a scalar-valued function. If we define the “extended” function ﬁg =
(FT,F{,..., F;T), then the program to evaluate f can be simply written as illustrated
in Figure 1, where y7 = (y7,..., y;;':)

1432 THOMAS F. COLEMAN AND GUDBJORN F. JONSSON

Differentiation of this program with respect to the original variables z as well as
the intermediate variables y vields an “extended” Jacobian matrix:

(]:—E)z (]}E))

2 Jg = , v,

(2) E (v T v T

Typically the Jacobian matrix Jp = ((]:"’:E)I, (Fg)y) is sparse; hence, sparse AD

techniques can be applied to the function Fg to obtain this derivative information
efficiently. Note also that (]:_‘E)y is block lower-triangular.

Obtaining V; f from (2) boils down to a Schur-complement computation: elimi-
nate the (2,2)-block, V, 7, using a block Gaussian transformation; the transformed
(2,1)-block will hold the desired result, i.e., V,f7.

The two examples illustrated below fall into this general framework. They differ in
how Jg is obtained and the tailoring of the Schur complement computation described
above. Our experiments were performed on a Sun SPARC10 under Solaris, and the
software used was ADOLC, ADMIT, and MATLAB. ADOLC [7] is an automatic
differentiation tool for C/C++. ADMIT [5] is a MATLAB interface built on top of
ADOLC that also includes the graph-coloring algorithms. It offers both one-sided
and two-sided coloring.

For both forward and reverse mode, ADOLC stores all intermediate variables. as
well as the operations performed, on tapes. (Thus the distinction between memory
usage of forward and reverse mode mentioned above does not apply.) There are three
tapes for real variables, integers, and operations. The amount of memory allocated
for each tape is determined by the parameter “bufsize.” We set it to 524288. If the

number of entries for one of the three tapes exceeds this number, ADOLC will start
writing the tapes on disk.

2. Problem 1: The gradient of an implicit function. Inverse problems of-
ten lead to the minimization of an implicitly defined nonlinear function. QOur first
function class is in this category, where the evaluation of the objective function de-

pends on the numerical solution of a (linear) system of partial differential equations.
The function class has the form

(3) f(z) = f(y),

where y is the solution to the system
(4) Ay = F(z)

and A = A(z) is a sparse, symmetric, and positive definite matrix. Here f and f are
scalar-valued. The gradient of f can be written as

(5) Vef = (J - Azy)TA_]Vyf’

Three different methods are used to compute the gradient:

1. Straightforward application of reverse mode. Reverse mode is used to take
the derivative of the function f(z). The code that is differentiated computes
f(z) using a sparse solver for symmetric and positive definite systems to solve
the system Ay = F.

2. Ertended Jacobian. Following the structural ideas of Coleman and Verma [4],
we form the extended function

© res ()~ ("%).

STRUCTURED GRADIENTS 1433

20t e ees o o oo o

254 .

s . .o 4
 ®eecssecesseccecccsecscne

0 5 10 15 20 25 30 35 40 a5 50

F1G. 2. The sparsity pattern for the extended Jacobian.

We use AD with graph-coloring techniques to compute the extended Jacobian

- _ Azy"j A
) JE“(0 [va)

(both the blocks Ay — J and A are sparse). The blocks of the matrix Jg are
then used in formula (5) to compute V, f.

3. Separate blocks (of extended Jacobian). In this approach, the block Azy— J is
computed using sparse AD, i.e., AD is used with graph-coloring algorithms to
differentiate A(z)y — F(z) with respect to z. The gradient V, f is computed
using reverse mode of AD. Subsequently, formula (5) is used to form V_f.

For all three methods we need to solve the sparse system Ay = F, and for methods
2 and 3 we also need to solve Aw =V, f. For this we use SSPD,! a package written
in C for solving large, sparse, symmetric, and positive definite systems.

The sparsity pattern of matrix A is one of the input parameters. The pattern
used for the numerical results in this paper comes from discretization of a square grid
with the natural ordering of the grid points. Figure 2 shows the resulting sparsity
pattern of the extended Jacobian for a 5 x5 grid. When computing Jg, we use coloring
by rows, while the coloring is done by columns for A,y — J in the separate blocks
approach. Note that the timing does not include the graph-coloring part, since if the
gradient computation is a part of an iterative method, this has to be done only once.

Figure 3 shows timing results for the methods discussed above. The vertical axis is
the time w(V f) it takes to compute the gradient divided by the time w(f) to evaluate
the function. According to theory, this ratio should approach a constant, and that is
indeed what happens for methods 2 and 3.

However, for the straightforward approach the time ratio increases as the problem
gets bigger and there is a jump around n = 500. The reason for the jump is that
memory limitations have been reached and ADOLC is forced to store the computations
on disk. But even in the absence of memory restrictions, this approach is slower than
the other two. The explanation lies in the fact that in the straightforward approach we
are taking the derivative of the process of solving the system A(z)y = F(x), while in
the other two methods this is outside the piece of code that is differentiated. Instead,
A(z)y — F(z) is differentiated, which is much simpler, especially since we provide
an efficient code for the product A(z)y. This also explains why method 1 has much
higher memory requirements.

IWritten by Chunguang Sun, Advanced Computing Research Institute, Cornell University.

1434 THOMAS F. COLEMAN AND GUDBJORN F. JONSSON

400 30

350+
251

300

20+
250

straighttorward
straightforwarad

200+

150+
10

extended
100

S0

separate

o W ”_ o

o 200 400 600 800 1000 1200 [200 400 600 800 1000 1200
Size(n) Size(n)

F1G. 3. The time ratio w(Vf)/w(f) for problem 1. The right plot is a blowup of the left plot.

The separate blocks approach is slightly faster than the extended Jacobian ap-
proach. This is because reverse mode is somewhat more expensive than forward
mode and because in the extended approach we do an unnecessary differentiation of
A(z)y — F(z) with respect to y. (The result A(z) has already been computed.)

3. Problem 2: Dynamical system. Consider the autonomous ODE
(8) y' = F(y).

and suppose for an initial state y(0) = z we use an explicit one-step method (e.g.,
Euler’s method or Runge-Kutta) to compute an approximation yx to a desired final
state y(T'). Then we estimate the error z = fo(yx—y(T)), where fj is some appropriate
scalar-valued function (e.g., the 2-norm). This leads to the class of functions described
below.

The function z = f(z) is defined as follows:

Yo =%,
(9) yi:S(yi_]) fOT’izl,Q,...,k,
z= fO(yk)7

where S : R™ — R™ and fy : R® — R. (Here S represents the advancement of one
step.) The gradient of f(z) is given by

(10) V1(@)]T = [Violy)]” Jr-1Jk—2 - - J1Jo,

where J; is the Jacobian of § at y;.
We explore several different methods to compute the gradient.
1. Straightforward use of reverse mode. Reverse mode of AD is used on the
program calculating the whole function.
2. Dense block reverse mode. The expression (10) is evaluated from left to right.
First, Vfo(yk) is computed using reverse mode, then it is used as a seed matrix
to compute [V fg(yk)]TJk_ 1, whose transpose is used as a seed to compute

[V fo(yx)]” Je—1Jk—2, and so on. Note that at each step the seed matrix has
only one column.

STRUCTURED GRADIENTS 1435

Fixed size: n=100

2500 T T T T T 3
o— straightforward
- - —» dense rev mode ™
o - -0 dense forw mode R
2000 F x Tk extended Jac > -
=] -0 sparse blocks >* - >
x -
1500 o)
1000+ -
oo :
—O0- O © ©X— > ©
500 B A) i
o800 o8-8 0 -8
W g gy W
o]

1 1
[e] S50 100 150 200 250 300
Number of steps (k)

Fi1G. 4. The time ratio w(Vf)/w(f) for Euler’s method.

3. Dense block forward mode. Similar to method 2, but here we compute (10)
from right to left. The identity is used as a seed matrix to compute Jp, which
is used as a seed matrix to compute J1Jp, and so on.

4. FErtended Jacobian. Sparse AD is used on the extended function

Yo S(yo)
(11) 9E : : — :
Yk-1 S(yk-1)
vielding
Jo
(12) Jg =
Jk-1

and reverse mode is used to compute V fo(yx). Subsequently, the gradient
Vf(z) is formed using formula (10).

5. Sparse blocks. Each block J; is computed separately using sparse AD, and
Vfo(yk) is computed using reverse mode. Formula (10) is used to compute
the gradient V f(z).

In our experiments each elemental Jacobian J; is tridiagonal: the time-stepping
function is Euler’s method or fourth-order Runge-Kutta used on a linear constant
coefficient ODE. For the two approaches using sparse AD. the coloring is done by
columns. The multiplication in (10) is done from left to right rather than from right
to left, since the former involves matrix-vector multiplications while the latter involves
matrix-matrix multiplications. (Although both matrices are sparse to begin with, we
get fill-in causing the latter approach to be costly).

Figures 4 and 5 show the timing for Euler’'s method and Runge-Kutta, respec-
tively, where the length of the vector z is fixed and the number of steps varies. The

1436 THOMAS F. COLEMAN AND GUDBJORN F. JONSSON

Fixed size: n=50

1200 T Y
K
OO straighttorward
- = dense rev mode X e
1000 - o - =0 dense forw mode o 2
x Coex extended Jac X > k
oo sparse blocks ;)
800
600 -
400 |+
200 |
(o}
o]

Number ot steps (k)

F1G. 5. The time ratio w(Vf)/w(f) for fourth-order Runge-Kutta.

vertical axis is the time w(V f) it takes to compute the gradient divided by the time
w(f) it takes to evaluate the function. All the calculations are done through ADMIT
and MATLAB: the timing does not include the graph-coloring step.

The flop count for the step function S used here is O(n), so it takes O(nk) time
to evaluate the function. The time to compute the gradient is also O(nk), except for
method 3, where it is O(n?k). The memory requirement for method 3 is independent
of k. For all the other methods, we first need to do a forward sweep to compute and
store the y;’s before we do a reverse sweep to compute the derivatives. This requires
O(nk) memory.

The memory complexity can be reduced by using Griewank’s checkpointing scheme
[8] but at the cost of some increase in time complexity. This could be used separately
or together with method 2 if there were not enough internal memory to store all the
Yi's.

The straightforward approach performs well for small problems, but similar to
problem 1. the time blows up when memory limitations are reached. This also happens
for the extended Jacobian approach, although forward mode is used. As mentioned
before ADOLC records, for both forward and reverse modes, all operations performed
and indices used in addition to internal variables. The reason for the jump is that the
space allocated for the integer tape fills up. Although the number of real variables
stored is O(nk) for all the methods (except method 3), the memory requirement for
the other information is O(nk) for methods 1 and 4 but only O(n) for methods 2 and
5.

Ignoring these memory issues, methods 1 and 2 have similar running times, since
both are doing essentially the same computation. Methods 4 and 5 are about two or
three times slower than the first two methods. This is not surprising. since the seed
matrices V used in the forward mode computations J;V in methods 4 and 5 have
three columns, whereas the seed matrices W in the reverse mode computations W7 J;
in methods 1 and 2 have only one column.

STRUCTURED GRADIENTS 1437

For dense block forward mode the seed matrix has width n, so one would expect
this method to always be slower than sparse blocks. On the other hand, the multipli-
cation is implicit in the dense method, while in sparse blocks each J; is formed and
then multiplied by a vector.

4. Conclusions. Large optimization problems are usually structured. In this
paper we have illustrated how structure can be used to enable efficient gradient com-
putation. Specifically, we have explored the use of automatic differentiation to com-
pute the gradient in two important structured function classes.

In some cases, our structured approach improves the running time, but more
importantly it has space advantages. In particular, since reverse mode requires that
all intermediate results be stored during the gradient computation, it may use a huge
amount of memory—this certainly shows up in our numerical experiments. Indeed,
when applying reverse mode to the whole function, memory limitations are reached
for moderately sized problems. However, memory requirements for the structured
approach are relatively modest.

Acknowledgment. We thank Arun Verma for valuable suggestions and help
using the ADMIT toolbox.

REFERENCES

[1] C. H. BisCHOF, A. CARLE, P. M. KHADEMI, AND A. MAUER, ADIFOR 2.0: Automatic differ-
entiation of Fortran 77 programs, IEEE Comput. Sci. Engrg., 3 (1996), pp. 18-32.

[2] C. H. BiscHoF, A. BOUARICHA, P. M. KHADEMI, AND J. J. MORE, Computing gradients in
large-scale optimization using automatic differentiation, INFORMS J. Comput., 9 (1997),
pp. 185-194.

[3] T. F. CoLEMAN AND A. VERMA, The efficient computation of sparse Jacobian matrices using
automatic differentiation, SIAM J. Sci. Comput, 19 (1998), pp. 1210-1233.

[4] T. F. COLEMAN AND A. VERMA, Structure and efficient Jacobian calculation, in Computational
Differentiation: Techniques, Applications, and Tools, M. Berz, C. Bischof, G. Corliss, and
A. Griewank, eds., SIAM, Philadelphia, PA, 1996, pp. 149-159.

[5] T. F. COLEMAN AND A. VERMA, ADMIT-1: Automatic Differentiation and MATLAB Interface
Toolboz, Tech. Rep. CTC97TR271, Theory Center, Cornell University, Ithaca, NY, 1997.

[6] T. F. COLEMAN AND A. VERMA, Structure and efficient Hessian calculation, in Advances in
Nonlinear Programming, Ya-xiung Yuan, ed., Kluwer Academic Publishers, Norwell, MA,
1998, pp. 57-72.

[7] A. GRIEWANK, D. JUEDES, AND J. UTKE, ADOL-C: A package for the automatic differentiation
of algorithms written in C/C++, ACM Trans. Math. Software, 22 (1996), pp. 131-167.

[8] A. GRIEWANK, Achieving logaritmic growth of temporal and spatial complezity in reverse au-
tomatic differentiation, Optim. Methods Softw., 1 (1992), pp. 35-54.

